

Bringing Nobel Prize-winning technology to the chemical industry

European Union European Regional **Development Fund**

Development of formulations and optimization of polymerization process and other industrial process development

Apeiron Synthesis / © 2023

Our focus: Olefin Metathesis

Cross Metathesis (CM)

Ring Closing Metathesis (RCM)

Ring Opening Metathesis (ROM)

Ring Opening Metathesis Polymerization (ROMP)

Acyclic Diene Metathesis polymerization (ADMET)

Application

Why we do what we do?

We help our partners make a difference in the world.

Healthcare

benign and cheaper methods for the production of new generation drugs

Decreased fossil fuel reliance

high value chemicals derived from renewable feedstocks

Reduced CO₂ footprint

application of novel light-weight advanced materials in the automotive industry

Apeiron Synthesis / \bigcirc 2023

Product and IP

Proprietary catalysts covering major European, North American and Asian markets

Vision & People

Our passion: Providing clients with an enabling technology that will allow development of novel processes and products, thus opening new market opportunities and generating positive impact

Our niche: Olefin metathesis for industrial applications

Use case – Apeiron's catalyst vs. competitor's eading the way in metathesis

Synthesis of Hepatitis C Antiviral Agent BILN 2061

Apeiron's Technology at Work

- 18x reduced manufacturing cost
- 16x shorter reaction time
- 7x lower production waste

UltraCat and UltraNitroCat Scale Up

POIR.01.01.01-00-0795/17-02

Gawin R., Kozakiewicz A., Guńka P.A., Dąbrowski P., Skowerski K. Angew Chem Int Ed Engl. 2017;56, 981

UltraCat and UltraNitroCat Scale Up

`CN

POIR.01.01.01-00-0795/17-02

Ph

R

Cl◀

9-DAME

CatalystGC yield [%]Selectivity
[%]TON
[%]UltraNitroCat757538.000nitro-Grela348118.400 \int_{8}^{0} \int_{3}^{0} \int_{10}^{0} \int_{10}^{0} \int_{10}^{0} \int_{10}^{0} \int_{10}^{0} \int_{10}^{0}

Catalyst	GC yield [%]	TON
UltraNitroCat	90	30.000
nitro-Grela	7	2.300
Grubbs II	12	4.000

UltraNitroCat

 NO_2

European Union European Regional Development Fund

UltraCat and UltraNitroCat Scale Up

POIR.01.01.01-00-0795/17-02

High Value Chemicals from Natural Oils

^{CO₂Me}	Catalyst	MeO_2C
/	neat	1 1

methyl 9-decenoate

dimethyl 9-octadecenedioate

UltraCat cost per 1 kg of product 0.85 Euro

	Catalyst	Concentration	Catalyst loading [ppm]	Yield [%]	TON*
Elevance	C-827	neat	17.8 (80 ppm wt)	19	5 327
Apeiron	UltraCat	neat	2 (11 ppm wt)	71	177 250

*Catalyst Turn-over Number calculated for productive dimethyl 9-octadecenedioate formation.

UltraCat cost per 1 kg of product 0.65 Euro

	Catalyst	Additive	Concentration	Catalyst loading [ppm]	Yield [%]	TON*	Reaction time
Nalco Sciences	G-II (C-848)	2-chloro-1,4- benzoquinone	neat	2.4 – added in 6 portions	60	125 595	6h
Apeiron	UltraCat	-	neat	1 – added in 1 portion	63	315 850	1h

*Catalyst Turn-over Number calculated for productive dimer formation.

11

- 1. Elevance Renewable Sciences INC US 2013/0204022A1
- 2. http://www.materia-inc.com/products/catalysts/library
- 3. Apeiron Synthesis PCT/IB2016/054486
- 4. Nalco Sciences US9150468

– projects underway (polymers) –

advanced material for Mercedes AMG

specialty materials for 3D printing

Lab & Equipment

Apeiron operates from a **400 m² laboratory** at Wrocław Technology Park.

The company uses state-of-the-art lab equipment

Agnieszka Roszyk

Key Account Manager Agnieszka.roszyk@apeiron-synthesis.com +48 603 464 071

Apeiron Synthesis S.A. Wroclaw Technology Park ul. Duńska 9, 54-427 Wrocław Poland

apeiron-synthesis.com